

With Early Release ebooks, you get books in their earliest
form—the author’s raw and unedited content as they write—
so you can take advantage of these technologies long before

the official release of these titles.

Derar Alhussein

Databricks Certified Data Engineer
Associate Study Guide

In-Depth Guidance and Practice

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-16683-0

Databricks Certified Data Engineer Associate Study Guide
by Derar Alhussein

Copyright © 2025 Derar Alhussein. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Shira Evans and Aaron Black
Production Editor: Aleeya Rahman
Interior Designer: David Futato

Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

February 2025: First Edition

Revision History for the Early Release
2024-04-24: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098166830 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Databricks Certified Data Engineer
Associate Study Guide, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the publisher’s views. While
the publisher and the author have used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or
omissions, including without limitation responsibility for damages resulting from the use of or reliance
on this work. Use of the information and instructions contained in this work is at your own risk. If any
code samples or other technology this work contains or describes is subject to open source licenses or the
intellectual property rights of others, it is your responsibility to ensure that your use thereof complies
with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098166830

Table of Contents

1. Managing Data with Delta Lake . 5
Introducing Delta Lake 5

What is Delta Lake? 6
Delta Lake Transaction Log 7
Understanding Delta Lake Functionality 8
Delta Lake Advantages 13

Working with Delta Lake Tables 13
Creating Tables 14
Catalog Explorer 14
Inserting Data 15
Exploring Table Directory 16
Exploring Table History 18

Exploring Delta Time Travel 20
Querying Older versions 21
Rollbacking Back to Previous Versions 22

Optimizing Delta Lake Tables 24
Z-Order Indexing 25

Vacuuming 29
Vacuuming in Action 29

Dropping Delta Lake Tables 31

2. Mastering Relational Entities in Databricks . 33
Understanding Relational Entities 33

Databases in Databricks 33
Tables in Databricks 36

Putting Relational Entities Into Practice 39
Working in the default Schema 40
Working In a New Schema 43

iii

Working In a Custom-Location Schema 47
Setting Up Delta Tables 49

CTAS statements 49
Comparing CREATE TABLE vs. CTAS 51
Table Constraints 52
Cloning Delta Lake Tables 52

Exploring Views 53
View Types 55
Comparison of View Types 60

iv | Table of Contents

CHAPTER 1

Managing Data with Delta Lake

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 2nd chapter of the final book. Please note that the GitHub repo will be
made active later on.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at sevans@gmail.com.

Data Lakehouses leverage specialized storage frameworks to enhance the functional‐
ity of traditional data lakes. Among these frameworks, Delta Lake stands out as a
leading technology that empowers the Databricks Lakehouse Platform. In this chap‐
ter, we’ll explore the fundamental concepts of Delta Lake by first introducing its core
principles and then diving into its practical usage. Following this, we’ll focus on
advanced topics in Delta Lake such as Time Travel, tables optimization, and vacuum
operation.

Introducing Delta Lake
Traditional data lakes often suffer from inefficiencies and encounter various chal‐
lenges in processing big data. Delta Lake technology is an innovative solution
designed to operate on top of data lakes to overcome these issues. To establish a clear
understanding of Delta Lake, let’s first study its definition as provided by its original
creators at Databricks.

5

What is Delta Lake?
“Delta Lake is an open-source storage layer that brings reliability to data lakes by adding a
transactional storage layer on top of data stored in cloud storage”

—Databricks

In the context of data lakehouses, a storage layer refers to the framework responsible
for managing and organizing data stored within the data lake. It serves an intermedi‐
ary platform through which data is ingested, queried, and processed.

In other words, Delta Lake is not a storage medium or storage format. Common stor‐
age formats like Parquet, or JSON define how data is physically stored in the lake.
However, Delta Lake runs on top of such data formats to provide a robust solution
that overcomes the challenges of data lakes.

While data lakes are excellent solutions for storing massive volumes of diverse data,
they often encounter several challenges related to data inconsistency, and perfor‐
mance issues. The primary factor behind these limitations is the absence of ACID
transactions support in the lake. ACID, an acronym for Atomicity, Consistency, Isola‐
tion, and Durability, represents fundamental rules that ensure operations on the data
are reliably executed. This absence made it difficult to ensure data integrity, leading to
issues like partially committed data or failed transactions.

What makes Delta Lake an innovative solution is its ability to overcome such chal‐
lenges posed by traditional data lakes. Delta Lake provides ACID transaction guaran‐
tees for data manipulation operations in the lake. It offers transactional capabilities
that enable performing data operations in an atomic and consistent manner. This
ensures that there is no partially committed data; either all operations within a trans‐
action are completed successfully, or none of them are. These capabilities allow you to
build reliable data lakes that ensure data integrity, consistency, and durability.

Delta Lake is optimized for cloud object storage. It seamlessly integrates with leading
cloud storage platforms such as Amazon S3, Azure Data Lake Storage, and Google
Cloud Storage.

On top of all this, Delta Lake is an open-source library. Unlike proprietary solutions,
Delta Lake’s source code is freely available to you on Github at https://github.com/
delta-io/delta

To put all together, we can visualize the concepts discussed above through an illustra‐
tive graph. In Figure 1-1, we highlight the key elements that constitute the Delta Lake
technology.

6 | Chapter 1: Managing Data with Delta Lake

https://github.com/delta-io/delta
https://github.com/delta-io/delta

Figure 1-1. 1 Illustration of Delta Lake technology

Delta Lake Transaction Log
The Delta Lake library is deployed on the cluster as part of the Databricks runtime.
When you create a Delta Lake table within this ecosystem, the data is stored on the
cloud storage in one or more data files in Parquet format. However, alongside these
data files, Delta Lake creates a transaction log in JSON format, as illustrated in
Figure 1-2.

Introducing Delta Lake | 7

Figure 1-2. Illustration of Delta Lake tables creation

The Delta Lake transaction log, often referred to as Delta Log, is an ordered record of
every transaction performed on the table since its creation. As a result, it functions as
the source of truth for the table’s state and history. So every time you query the table,
Spark checks this transaction log to determine the most recent version of the data.

Each committed transaction is recorded in a JSON file. This file contains essential
details about the operations performed, such as its type (insert, update, …, etc) and
any predicate used during these operations, including conditions and filters. Beyond
simply tracking the operations executed, the log also captures the names of all data
files affected by these operations.

In the next section, we will see how these transactional capabilities are leveraged by
Delta Lake to ensure ACID compliance during data retrieval and manipulation.

Understanding Delta Lake Functionality
Let’s learn how Delta Lake functions by looking at a series of illustrative examples,
each designed to provide a deeper understanding of its behavior in different scenar‐
ios. For instance, consider a situation where two users, Alice and Bob, interact with a
Delta Lake Table. Alice represents a data producer, while Bob is a data consumer.

8 | Chapter 1: Managing Data with Delta Lake

Their interaction on the table can be described in four key scenarios: data reading
and writing, data updating, concurrent reads and writes, and lastly, failed write
attempts. Let’s discuss them in detail one by one.

Reading and Writing Scenario

1. 1- Write Operation by Alice:
a. Alice initiates this scenario by creating the Delta Table and populating it with

data, as illustrated in Figure 1-3. The Delta module stores the table, for exam‐
ple, in two data files (“part 1” and “part 2”) and saves them in a parquet for‐
mat within the table directory on the storage. Upon the completion of writing
the data files, the Delta module adds a transaction log, labeled as “000.json”
into the ‘_delta_log’ sub directory. This transaction log captures metadata
information about the changes made to the Delta Table. This includes the
operation type, the name of the newly created data files, the transaction time‐
stamp, and any other relevant information.

Figure 1-3. Illustration of the writes/reads scenario

1. 2- Read Operation by Bob:
a. Subsequently, Bob queries the Delta Table through a SQL SELECT statement.

However, before directly accessing the data files, the Delta module always
begins by consulting the transaction log associated with the table. In this par‐
ticular case, it starts by reading the “000.json” transaction log located in the
‘_delta_log’ subfolder. This log contains information regarding the data files

Introducing Delta Lake | 9

“part 1.parquet” and “part 2.parquet”, that capture the changes made by Alice
during the write operation. The Delta module proceeds by reading these two
data files and returning the results to Bob.

So, Delta Lake follows a structured approach for managing and processing the data in
the lake. It always uses the transaction log as a point of reference to interact with the
data files of Delta Lake tables.

Updating Scenario
In our second scenario, Alice makes an update to a record residing in file “part 1.par‐
quet” of the Delta Table, as illustrated in Figure 1-4. However, since parquet files are
immutable, Delta Lake takes a unique approach to updates. Instead of directly modi‐
fying the record within the existing file, the Delta module makes a copy of the data
from the original file, and applies the necessary updates in a new data file, “part 3.par‐
quet”. It then updates the log by writing a new JSON file (001.json). The new log file is
now aware that the data file “part 1.parquet” is no longer relevant to the current state
of the table.

Figure 1-4. Illustration of the updates scenario

When Bob attempts to read data from the table, the Delta module first consults the
transaction log to determine the valid files for the current table version. In this
instance, the log indicates that only the parquet files “part 2” and “part 3” are
included in the latest version of the table. As a result, the Delta module confidently
reads data from these two files, and ignores the outdated file “part 1.parquet”.

10 | Chapter 1: Managing Data with Delta Lake

So, Delta Lake follows the principle of immutability; once a file is written to the stor‐
age layer, it remains unchanged. The approach of handling updates through file copy‐
ing and transaction log management ensures that the historical versions of data are
preserved. This offers a comprehensive record of all modifications performed on the
table. We will explore in the following section how to leverage these historical ver‐
sions for tasks such as auditing, rollbacks, and time travel queries.

Concurrent Writes/Reads Scenario
In this scenario, Alice and Bob are both interacting with the table simultaneously, as
illustrated in Figure 1-5. Alice is inserting new data, initiating the creation of a new
data file (part 4.parquet). Meanwhile, Bob is querying the table, where the Delta mod‐
ule starts by reading the transaction log to determine which parquet files contain the
relevant data.

At the time Bob executes the query, the transaction log includes information about
the parquet files “part 2” and “part 3” only, as the file “part 4.parquet” is not fully
written yet. So, Bob’s query reads the two latest files available that represent the cur‐
rent table state at that moment. Using this methodology, Delta Lake guarantees that
you will always get the most recent version of the data. Your read operations will
never have a deadlock state or conflicts with any ongoing operation on the table.

Figure 1-5. Illustration of the concurrent writes/reads scenario

Finally, once Alice’s query finishes writing the new data, the Delta module adds a new
json file to the transaction log, named as 002.json.

Introducing Delta Lake | 11

In summary, Delta Lake’s transaction log helps avoid conflicts between write and read
operations on the table. So, even when write operations are occurring simultaneously,
read operations can proceed without waiting for them to complete. This capability
helps maintain the reliability and performance of data operations on Delta Lake
tables.

Failed Writes Scenario
Here is our last scenario, imagine that Alice attempts again to insert new data into the
Delta Table, as illustrated in Figure 1-6. The Delta module begins writing the new
data to the lake in a new file, ”part 5.parquet”. However, an unexpected error occurs
during this operation, resulting in the creation of an incomplete file. This failure pre‐
vents the Delta Lake module from recording any information related to this incom‐
plete file in the transaction log.

Figure 1-6. Illustration of the failed writes scenario

Now, when Bob queries the table, the Delta module starts, as usual, by reading the
transaction log. Since there is no information about the incomplete file “part 5.par‐
quet” in the log, only the parquet files “part 2”, “part 3”, and “part 4” will be consid‐
ered for the query output. Consequently, Bob’s query is protected from accessing the
incomplete or dirty data created by Alice’s unsuccessful write operation.

In essence, Delta Lake guarantees the prevention of reading incomplete or inconsis‐
tent data. The transaction log serves as a reliable record of committed operations on
the table. And in the event of a failed write, the absence of corresponding information
in the log ensures that subsequent queries won’t be affected by incomplete data.

12 | Chapter 1: Managing Data with Delta Lake

Delta Lake Advantages
Delta Lake’s strength arises from its robust transaction log, which serves as the back‐
bone of this innovative solution. This log empowers Delta Lake to deliver a range of
features and advantages that can be summarized by the following key points:

Enabling ACID transactions
The main advantage of the transaction log is that it enables Delta Lake to execute
ACID transactions on traditional data lakes. This feature helps maintain data
integrity and consistency when performing data operations, ensuring that they
are processed reliably and efficiently.

Scalable metadata handling
Another primary benefit of Delta Lake is the ability to handle table metadata effi‐
ciently. The table metadata, which represents information about the structure,
organization, and properties of the table, is stored in the transaction log itself
instead of a centralized metastore. This strategy enhances query performance
when it comes to listing large directories and reading vast amounts of data.

Full audit logging
Additionally, the transaction log serves as a comprehensive audit trail that cap‐
tures every change occurring on the table. It tracks all modifications, additions,
and deletions made to the data, along with the timestamps and user information
associated with each operation. This allows you to trace the evolution of the data
over time which facilitates troubleshooting issues, and ensures data governance.

Leveraging standard file formats
Delta Lake uses standard file formats like Parquet and JSON. It stores the data in
Parquet format, which is known for its efficiency in terms of both storage and
query performance. While it records the transaction log in JSON format, which
is fast to parse and generate. By leveraging these formats, Delta Lake ensures
optimized data storage and retrieval.

Working with Delta Lake Tables
In this section, we dive into the practical aspects of Delta Lake. We’ll walk through
essential tasks such as creating Delta Lake tables, inserting data, updating tables with
new information, and exploring the underlying directory structure. Through hands-
on examples, you’ll gain a comprehensive understanding of how Delta Lake works in
your Databricks environment.

We will conduct these exercises within a new SQL notebook, named ‘2.1 - Delta Lake’,
which you can find on the book’s GitHub repository.

Working with Delta Lake Tables | 13

In Databricks, tables are organized in a database within a catalog. For the purpose of
these exercises, we will use the ‘hive_metastore’ catalog, which is available by default
in every Databricks workspace. A detailed discussion on the Hive metastore will be
provided in the next chapter. For the present, let us proceed by executing the follow‐
ing command to set the active catalog to “hive_metastore:”

USE CATALOG hive_metastore

This command configures the current notebook to use the ‘hive_metastore’ catalog,
ensuring that all subsequent operations on Delta Lake tables are executed under this
catalog.

Creating Tables
Creating Delta Lake tables closely resembles the conventional method of creating
tables in standard SQL. It starts with the ‘CREATE TABLE’ keyword followed by the
table name. Then, you provide the schema of the table by specifying the columns
along with their corresponding data types. Consider the following example where we
create an empty Delta Lake table named ‘product_info’

CREATE TABLE product_info (
 product_id INT,
 product_name STRING,
 category STRING,
 price DOUBLE,
 quantity INT
)
USING DELTA;

In this example, ‘product_info’ represents a table designed to store product-related
details. It includes five columns: ‘product_id’ of type integer, ‘product_name’ and ‘cat‐
egory’ of type string, ‘price’ of type double, and quantity (integer representing avail‐
able stock of each product).

It’s worth mentioning that explicitly specifying ‘USING DELTA’ identifies Delta Lake
as the storage layer for the table, but this clause is optional. Even in its absence, the
table will still be recognized as a Delta Lake table since DELTA is the default table
format in Databricks.

Catalog Explorer
After creating the Delta Lake table named ‘product_info’ using the provided SQL
script, you can explore it via the Catalog Explorer interface. To open the Catalog
Explorer, click on the ‘Catalog’ tab in the left sidebar of your Databricks workspace.

14 | Chapter 1: Managing Data with Delta Lake

Figure 1-7. The interface of the Catalog Explorer

In the interface, navigate to the default database in the left panel to find the ‘prod‐
uct_info’ table. If you click on it, you can examine the table’s columns, review sample
data entries, and explore additional information displayed on the right panel, as
shown in Figure 1-7.

Inserting Data
In Delta Lake, data insertion can be easily achieved through the use of the standard
SQL INSERT INTO statement. Like in standard SQL, you can use this statement to
add a single line or multiple lines of data:

INSERT INTO product_info (product_id, product_name, category, price, quantity)
VALUES (1, 'Winter Jacket', 'Clothing', 79.95, 100);
INSERT INTO product_info (product_id, product_name, category, price, quantity)
VALUES
 (2, 'Microwave', 'Kitchen', 249.75, 30),
 (3, 'Board Game', 'Toys', 29.99, 75),
 (4, 'Smartcar', 'Electronics', 599.99, 50);

Each operation on the table represents an individual transaction influencing the
table’s state. In this context, each INSERT statement generates a separate data file
within the table directory. So, after executing these two INSERT commands, two dis‐
tinct data files will be added to the table directory. The first file contains the initial
single record, while the second data file contains the three additional records that
were inserted in the subsequent INSERT statement.

Working with Delta Lake Tables | 15

This example simulates real-world scenarios where data is written to a table in several
operations, such as data ingestion by multiple runs of scheduled jobs.

By executing the above two INSERT commands, four records will be inserted into the
table. But if you execute them in the same cell, the displayed result will indicate the
successful insertion of just three records. This outcome occurs due to the default
behavior in the notebook editor where only the result of the last command executed
within the cell is typically displayed.

HINT: To view the outcomes of individual SQL statements when
having multiple commands in a single cell, select each specific
SQL statement separately and use Shift+Ctrl+Enter to run the
selected text. Alternatively, you can use separate cells for each
SQL statement.

To access and verify the inserted data, simply query the table through the standard
SQL SELECT statement. Like in SQL, you can also filter data based on conditions,
and aggregate information if needed.

SELECT * FROM product_info

Figure 1-8. The result of the SELECT statement from the product_info table

Figure 1-8 displays the result of the SELECT query on the ‘product_info’ table. It dis‐
plays the 4 inserted records, confirming that the two transactions were successfully
performed on the table.

Exploring Table Directory
As previously discussed, the execution of the two transactional operations on the
table resulted in creating two small data files in the table directory. To validate this,
we can use the DESCRIBE DETAIL command on our table. This command enables
you to explore the metadata of Delta Lake tables. It provides essential information
about the table such as the ‘numFiles’ field, indicating the number of data files in the
current table version.

DESCRIBE DETAIL product_info

16 | Chapter 1: Managing Data with Delta Lake

Figure 1-9. Figure 1-29. The output of the DESCRIBE DETAIL command on the ‘prod‐
uct_info’ table

Figure 1-9 shows the output of the DESCRIBE DETAIL command on the ‘prod‐
uct_info’ table. The ‘numFiles’ column confirms that the table indeed has two data
files resulting from our two INSERT operations.

Additionally, the command above shows the location of the table, indicating the
directory where the table files are stored on the storage. As indicated, the ‘prod‐
uct_info’ table is stored under ‘dbfs:/user/hive/warehouse/product_info’. To gain a
deeper understanding of the table’s file structure, we can use the %fs magic command
that allows you to explore the contents of the table directory:

%fs ls ‘dbfs:/user/hive/warehouse/product_info’

Figure 1-10. The output of the %fs command on the ‘product_info’ table directory

Figure 1-10 illustrates the result of executing the above %fs command. It shows that
the table directory indeed holds two data files, both in Parquet format. Furthermore,
it shows the ‘_data_log’ subdirectory, containing the translation log files of the table.

Updating Delta Lake Tables
Now, considering update operations, let’s explore a scenario where the task involves
adjusting the price of the product #3 (Board Game) by incrementing its price by $10.

UPDATE product_info
SET price = price + 10
WHERE product_id = 3

Examining the table directory after this update operation reveals an interesting obser‐
vation: a new file addition (Figure 1-11).

Working with Delta Lake Tables | 17

Figure 1-11. The output of the %fs command after the update operation

As previously mentioned, when updates occur, Delta Lake doesn’t directly modify
existing files, but rather creates updated copies of them. Afterward, Delta Lake lever‐
ages the transaction log to indicate which files are valid in the current version of the
table. To confirm this behavior, you can run the DESCRIBE DETAIL command
again.

Figure 1-12. The output of the DESCRIBE DETAIL command after the update operation

Figure 1-12. displays the table metadata following the update. It shows that the count
of the table’s files is still 2, and not 3!. These are the two files that represent the current
table version, including the newly updated file resulting from the recent update oper‐
ation. When querying the Delta table again, the query engine leverages the transac‐
tion logs to identify all the data files that are valid in the current version, and exclude
any outdated data files. If you query the table after this update operation, you can ver‐
ify that the pricing information of the product #3 has been successfully updated.

Note: Starting from Databricks Runtime Version 14, adjustments
have been made to the way update and delete operations are
applied, affecting the associated data files in the table directory.
This change is due to the introduction of Deletion Vectors in Delta
Lake (https://docs.databricks.com/delta/deletion-vectors.html)

Exploring Table History
In Delta Lake, the transaction log maintains the history of all changes made to the
tables. To access the history of a table, you can use the DESCRIBE HISTORY com‐
mand:

DESCRIBE HISTORY product_info

18 | Chapter 1: Managing Data with Delta Lake

https://docs.databricks.com/delta/deletion-vectors.html

1 A checksum is a unique value computed from the contents of a file using an algorithm. It serves as a sort of
digital fingerprint that helps determine if any changes or corruption have occurred in the associated file. In
other words, a checksum ensures data integrity of the associated file.

Figure 1-13. 13 The output of the DESCRIBE HISTORY command on the ‘product_info’
table

Figure 1-13 illustrates the table history, revealing four distinct versions starting from
the table creation at version zero. Moving forward, versions 1 and 2 indicate write
operations on the table, representing our two insert commands, while version 3 indi‐
cates the update operation. All this information is captured within the transaction log
of the table.

The transaction log is located under the ‘_delta_log’ folder in the table directory. You
can navigate to this folder using the %fs magic command:

%fs ls 'dbfs:/user/hive/warehouse/product_info/_delta_log'

Figure 1-14. 14 The output of the %fs command on the _delta_log folder

Figure 1-14 illustrates the contents of the ‘_delta_log’ folder located within the ‘prod‐
uct_info’ table directory. You can observe that it contains nothing but JSON files,
along with their associated checksum1 files (having the .crc extension). Each JSON file

Working with Delta Lake Tables | 19

corresponds to a distinct version of the Delta Lake table. In the context of the ‘prod‐
uct_info’ table, we observe four JSON files, corresponding precisely to the four table
versions examined previously through the DESCRIBE HISTORY command.

To gain a deeper understanding of the transaction log, we can use the “%fs head”
command to explore the content of one of those JSON files. In particular, we can
examine the latest JSON file that represents the version #3 of the table:

%fs head 'dbfs:/user/hive/warehouse/product_info/_delta_log/
00000000000000000003.json'

{ "commitInfo":{"operation": "UPDATE", "timestamp": 1708794052735,
 "userName": "Derar Alhussein", ...}
}
{ "add":{"path": "part-00000-a21a2e7e-29b5-433a-a7ce-3d886f37e7dd-
c000.snappy.parquet",
 "modificationTime": 1708794052000, ...}
}
{ "remove":{"path": "part-00000-485c4e80-678f-4c03-9330-67159e215eb8-
c000.snappy.parquet",
 "deletionTimestamp": 1708794052717, ...}
}

The output of the ‘%fs head’ command above shows that the JSON file contains
structured JSON data about our update operation. The ‘add’ element specifies the
new data file appended to the table, while the ‘remove’ element specifies the data file
marked for soft deletion, in other words, It’s no longer part of the latest table version.

Exploring Delta Time Travel
Time Traveling is a feature in Delta Lake for exploring the historical evolution of the
data in Delta Lake tables. The key aspect of Delta Lake Time Travel is the automatic
versioning of the table. This versioning provides the full audit trail of all the changes
that have happened on the table. Whenever a change is made to the data, Delta Lake
captures and stores this change as a new version. Each version represents the state of
the table at a specific point in time.

To explore the historical versions of a Delta table, you can leverage the DESCRIBE
HISTORY command in SQL. This command provides a detailed log of all the opera‐
tions performed on the table, including information such as the timestamp of the
operation, the type of operation (insert, update, delete, etc), and any additional meta‐
data associated with the change.

Here’s an example of how you might use the DESCRIBE HISTORY command:

DESCRIBE HISTORY <table_name>;

20 | Chapter 1: Managing Data with Delta Lake

This command returns a table containing the operations performed on the specified
table in reverse chronological order, along with relevant details for each operation.

Let’s review again the history of the ‘product_info’ tabl

DESCRIBE HISTORY product_info

Figure 1-15. 15 The output of the DESCRIBE HISTORY command on the ‘product_info’
table

Our table has currently four distinct versions, as illustrated in Figure 1-15:

• Version 0: This is the initial version of the table, representing its state at creation.
Since the table was created empty, this version captures only the initial schema
and metadata of the table.

• Versions 1 and 2: These versions indicate write operations on the table, repre‐
senting our two insert commands.

• Version 3: This version indicates the update operation on the table. It currently
represents the latest state of the table.

Querying Older versions
The versioning system in Delta Lake is automatic, ensuring that every operation per‐
formed on a table is assigned a unique version number and a timestamp. To query
older versions of the table, Delta Lake offers two distinct approaches, either by time‐
stamp or version number.

Querying by Timestamp
The first method allows you to retrieve the table’s state as it existed at a specific point
in time. This involves specifying the desired timestamp in the SELECT statement
using the TIMESTAMP AS OF keyword:

SELECT * FROM <table_name> TIMESTAMP AS OF <timestamp>

Querying by Version Number
The second method involves using the version number associated with each opera‐
tion on the table, as illustrated in the table history in Figure 1-16.

Exploring Delta Time Travel | 21

Figure 1-16. 16 The output of the DESCRIBE HISTORY command on the ‘product_info’
table

You can use the VERSION AS OF keyword to travel back in time to a specific version
of the table:

SELECT * FROM <table_name> VERSION AS OF <version>

Consider a scenario where we need to retrieve the product data exactly as it existed
before the update operation, identified as version #2 in our ‘product_info’ table. We
can simply use the following query:

SELECT * FROM product_info VERSION AS OF 2

Alternatively, you can use its short syntax represented by @v followed by the version
number:

SELECT * FROM product_info@v2

Figure 1-17. 17 The result of querying the version 2 of the product_info table

Figure 1-17 shows the result of querying the version 2 of our table. So, Delta Lake’s
Time Travel enables you to independently investigate different versions of the data
without impacting the current state of the table. This feature is possible thanks to
those extra data files that had been marked as removed in our transaction log.

Rollbacking Back to Previous Versions
Delta Lake Time Travel is particularly useful in scenarios where undesired data
changes need to be rolled back to a previous state. For instance, in case of bad writes
or unintended data modifications, you can easily undo these changes by reverting to a
previous version of the table.

22 | Chapter 1: Managing Data with Delta Lake

Delta Lake offers the “RESTORE TABLE” command that allows you to roll back the
table to a specific timestamp or version number:

RESTORE TABLE <table_name> TO TIMESTAMP AS OF <timestamp>
RESTORE TABLE <table_name> TO VERSION AS OF <version>

Imagine a scenario where data has been accidentally deleted from our ‘product_info’
table, and we need to restore them.

DELETE FROM product_info

Upon executing the DELETE command, it removes all four records currently in the
table. You can easily confirm this by querying the table again. In addition, we can
review the table history to see that the delete operation has been recorded as a new
table version, labeled as version #4 (Figure 1-18.

Figure 1-18. 18 The output of the DESCRIBE HISTORY command after running the
DELETE command

To roll back the table to a previous version that existed before the deletion occurred,
specifically version 3, we can use the RESTORE TABLE command:

RESTORE TABLE product_info TO VERSION AS OF 3

Figure 1-19. 19 The output of the RESTORE TABLE command on the product_info
table

Figure 1-19 displays the output of the restoration operation. It shows that 2 files have
been restored, confirming the data has been successfully restored to its original state.
The ‘product_info’ table now contains the complete dataset, as it did before the dele‐
tion took place. You can easily confirm this by querying the table again.

We can also examine what really happened at our table by exploring its history:

DESCRIBE HISTORY product_info

Exploring Delta Time Travel | 23

Figure 1-20. The output of the DESCRIBE HISTORY command after the restoration
operation

Figure 1-20 displays the table history after the restoration operation. It shows that this
operation has been recorded as a new table version, labeled as version #5.

In summary, Delta Lake’s Time Travel brings a new level of flexibility to data manage‐
ment within Delta tables. It provides you with the capability to travel back in time to
a specific version of your tables, and restore them to a previous state if needed.

Optimizing Delta Lake Tables
Delta Lake provides an advanced feature for optimizing table performance through
compacting small data files into larger ones. This optimization is particularly signifi‐
cant as it enhances the speed of read queries from a Delta Lake table. You trigger
compaction by executing the OPTIMIZE command:

OPTIMIZE <table_name>

If you have a table that has accumulated many small files due to frequent write opera‐
tions. By running the OPTIMIZE command, these small files can be compacted into
one or more larger files. This concept is illustrated in an example in Figure 1-21,
where the optimization process results in two consolidated data files instead of six
small files.

24 | Chapter 1: Managing Data with Delta Lake

Figure 1-21. Illustration of the process of optimizing Delta Lake tables using the OPTI‐
MIZE command

Table optimization improves the overall performance of the table by minimizing
overhead associated with file management, and enhancing the efficiency of data
retrieval operations.

Z-Order Indexing
A notable extension of the OPTIMIZE command is the ability to leverage Z-Order
indexing. Z-Order indexing involves the reorganization and co-location of column
information within the same set of files. To perform Z-Order indexing, you simply

Optimizing Delta Lake Tables | 25

add the ZORDER BY keyword to the OPTIMIZE command. This should be followed
by specifying one or more column names on which the indexing will be applied

OPTIMIZE <table_name>
ZORDER BY <column_names>

For instance, back to our previous example in Figure 1-21, let’s consider the data files
containing a numerical column such as ‘ID’ that ranges between 1 and 100. Applying
Z-Order indexing to this column during the optimization process results in different
content written to the two compacted files. In this case, Z-Order indexing will ensure
that the first compacted file contains values ranging from 1 to 50, while the subse‐
quent file contains values from 51 to 100, as illustrated in Figure 1-22.

Figure 1-22. Illustration of Z-Order indexing

26 | Chapter 1: Managing Data with Delta Lake

This strategic arrangement of data enables the application of the data skipping algo‐
rithm in Delta Lake. This algorithm leverages Z-Order indexing to skip unnecessary
file scans when processing queries. In the provided example, if a query targets an ID,
such as 25, Delta Lake can quickly determine that ID #25 resides in the first compac‐
ted file. Consequently, it can confidently ignore scanning the second file altogether,
resulting in significant time savings.

Let’s now optimize our product_info table that currently has 2 small data files, as
indicated in the ‘NumFiles’ field of the table metadata (Figure 1-23):

DESCRIBE DETAIL product_info

Figure 1-23. The output of the DESCRIBE DETAIL before optimization

We can use the OPTIMIZE command to combine these files toward an optimal size

OPTIMIZE product_info
ZORDER BY product_id

Figure 1-24. The output of the OPTIMIZE command

Figure 1-24 shows the output of the OPTIMIZE command. The ‘numFilesRemoved’
in the metrics column indicates that two small data files have been soft deleted, while
the ‘numFilesAdded’ metric indicates that a new optimized file is added, compacting
those two files. In addition, we have added the Z-order indexing with our OPTIMIZE
command. In our case, we apply Z-order indexing to the product_id column. How‐
ever, with such a small dataset, the benefits of Z-order indexing may not be as signifi‐
cant, and its impact may not be noticeable.

To confirm the result of the optimization process, let’s review again the details of our
table

DESCRIBE DETAIL product_info

Figure 1-25. The output of the DESCRIBE DETAIL after optimization

Optimizing Delta Lake Tables | 27

Indeed, as illustrated in Figure 1-25, the current table version consists of only one
consolidated data file, indicating the success of the optimization operation. In addi‐
tion, we can check how the OPTIMIZE operation has been recorded in our table his‐
tory:

DESCRIBE HISTORY product_info

Figure 1-26. The output of the DESCRIBE HISTORY command after the optimization
operation

As expected and illustrated in Figure 1-26, the OPTIMIZE command created another
version of our table. This means that version 6 is the most recent version of the table.

Lastly, let us explore the data files in our table directory.

%fs ls 'dbfs:/user/hive/warehouse/product_info'

Figure 1-27. The output of the %fs command on the product_info table directory after
optimization

In Figure 1-27, we can see that there are 4 data files in the table directory. However, it
is important to remember that our current table version references only one file fol‐
lowing the optimization operation. This means that other data files in the directory
are unused files, and we can simply clean them up. In the next section, we will learn
how to achieve this task with Vacuuming.

In essence, Delta Lake’s OPTIMIZE command, coupled with Z-Order indexing, offers
a powerful mechanism to optimize table performance. It enhances the speed of read
queries by compacting small files and intelligently organizing their column informa‐
tion.

28 | Chapter 1: Managing Data with Delta Lake

Vacuuming
Delta Lake’s Vacuuming provides an efficient mechanism for managing unused data
files within a Delta table. As data evolves over time, there might be scenarios where
certain files become obsolete, either due to uncommitted changes or because they are
no longer part of the latest state of the table. The VACUUM command in Delta Lake
enables you to clean up these unwanted files, ensuring efficient storage management
that saves storage space and cost.

Here’s an example of how you might use the VACUUM command:

VACUUM <table_name> [RETAIN num HOURS]

The process involves specifying a retention period threshold for the files, so the com‐
mand will automatically remove all files older than this threshold. The default reten‐
tion period is set to 7 days, meaning that vacuum operation will prevent you from
deleting files less than 7 days old. This is a safety measure to ensure that no active or
ongoing operations are still referencing any of the files to be deleted.

It’s important to note that running the VACUUM command comes with a trade-off.
Once the operation is executed, and files older than the specified retention period are
deleted, you lose the ability to time-travel back to a version older than that period.
This is because the associated data files are no longer available. Therefore, it is crucial
to carefully consider the retention period based on your data retention policies and
data storage requirements.

Vacuuming in Action
Let’s optimize the storage and tidy up the file structure of our product_info table.
Before we start, let us first explore the data files in the table directory.

%fs ls 'dbfs:/user/hive/warehouse/product_info'

Figure 1-28. The output of the %fs command on the product_info table directory before
vacuuming

As shown in Figure 1-28, there are currently 4 data files in the table directory. How‐
ever, it is important to remember that our current table version references only one
file following the optimization operation detailed in the previous section. This means

Vacuuming | 29

that other data files in the directory are unused files, and we can simply clean them
up using the VACUUM command.

VACUUM product_info

However, upon executing the command, you realize that the files are still present in
the table directory. This is because, by default, VACUUM retains files for a period of 7
days to ensure ongoing operations can still access them if needed.

To overcome this default behavior, we attempt to specify a retention period of zero
hours to retain only the current version of the data.

VACUUM product_info RETAIN 0 HOURS
IllegalArgumentException: requirement failed: Are you sure you would like to vacuum
files with such a low retention period? If you have
writers that are currently writing to this table, there is a risk that you may cor-
rupt the state of your Delta table.

However, this command throws an exception since the retention period is low, com‐
pared to the default retention period of 7 days. As a workaround solution, and for
demonstration purposes only, we can temporarily disable the retention duration
check in Delta Lake. It’s important to note that this approach is not recommended for
production environments due to potential data integrity issues.

SET spark.databricks.delta.retentionDurationCheck.enabled = false

With the retention duration check disabled, we can now proceed and rerun our VAC‐
UUM command with 0 HOURS retention period. To confirm its output, let’s explore
the table directory

%fs ls 'dbfs:/user/hive/warehouse/product_info'

Figure 1-29. The output of the %fs command on the product_info table directory before
vacuuming

Indeed, as illustrated in Figure 1-29, the operation this time successfully removed the
old data files from the table directory.

While the cleanup operation enhances storage efficiency, it comes at the cost of losing
access to older data versions for time travel queries. Attempting to query an old table
version results in a “file not found” exception, since the corresponding data files have
been deleted during the above VACUUM operation.

SELECT * FROM product_info@v1
FileReadException: Error while reading file part-00000-40ada852-ef55-4367-994a-

30 | Chapter 1: Managing Data with Delta Lake

eae08e0684d4-c000.snappy.parquet. File referenced in the transaction log cannot be
found.
Caused by: FileNotFoundException: Operation failed: "The specified path does not
exist.", 404, GET, PathNotFound, "The specified path does not exist.

Dropping Delta Lake Tables
In the final step of managing Delta Lake tables within the lakehouse architecture, we
can drop the table and permanently erase its associated data. Similar to SQL syntax,
we use the DROP TABLE command for this purpose

DROP TABLE product_info

Upon executing this command, the table, along with its data, will be deleted from the
lakehouse environment. To confirm this action, you can attempt to query the table
again, only to find that it is no longer found in the database. Furthermore, the direc‐
tory containing the table’s files is also completely removed.

%fs ls 'dbfs:/user/hive/warehouse/product_info'
FileNotFoundException: No such file or directory dbfs:/user/hive/warehouse/prod-
uct_info

In conclusion, the VACUUM command provides a mechanism for optimizing stor‐
age by removing unnecessary data files of Delta Lake tables. However, it’s crucial to
understand the impacts of file retention duration and consider the trade-offs between
storage efficiency and historical data accessibility.

Dropping Delta Lake Tables | 31

CHAPTER 2

Mastering Relational Entities in Databricks

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 3rd chapter of the final book. Please note that the GitHub repo will be
made active later on.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at sevans@gmail.com.

Relational entities, particularly databases, tables, and views, are essential components
for organizing and managing structured data in Databricks. Understanding how
these entities interact with the metastore and storage locations is crucial for efficient
querying and data management. In this chapter, we will cover in detail how these
entities function within the Databricks environment and understand their relation‐
ship with the underlying storage.

Understanding Relational Entities
Databases in Databricks
In Databricks, a database essentially corresponds to a schema in the Hive metastore.
This means that when you create a database, you’re essentially defining a logical
structure where tables, views and functions can be organized. This collection of data‐
base objects is called a schema. You have the flexibility to create a database using

33

either the CREATE DATABASE or CREATE SCHEMA syntax, as they are function‐
ally equivalent.

The Hive metastore serves as a repository for metadata, storing essential information
about data structures such as databases, tables, and partitions. This metadata includes
details like table definitions, data formats, and storage locations.

Default Database
Every Databricks workspace includes a central Hive metastore that all clusters can
access to persist table metadata. By default, a database named “default” is provided in
the Hive metastore. When you create tables without explicitly specifying a database
name, they are created under this default database. The data for these tables is stored
in the default directory for Hive, typically located at “/user/hive/warehouse” on the
DBFS file system, as illustrated in Figure 2-1.

Figure 2-1. Illustration of creating tables under the default database

Creating Databases
Apart from the default database, you can create additional databases using the CRE‐
ATE DATABASE or CREATE SCHEMA syntax. These databases are also stored in
the Hive metastore, with their corresponding folders under the default Hive directory
in “/user/hive/warehouse”. These database folders are distinguished by the “.db”
extension to differentiate them from table directories, as illustrated in Figure 2-2.

34 | Chapter 2: Mastering Relational Entities in Databricks

Figure 2-2. Illustration of creating an additional database and tables within this data‐
base

Custom-Location Databases
Moreover, you can create databases outside of the default Hive directory by specify‐
ing a custom location using the LOCATION keyword in the CREATE SCHEMA syn‐
tax. In this case, the database definition still resides in the Hive metastore, but the
database folder is located in the specified custom path. Tables created within these
custom databases will have their data stored in the respective database folder within
the custom location, as illustrated in Figure 2-3.

Understanding Relational Entities | 35

Figure 2-3. Illustration of creating a database in a custom location

Tables in Databricks
In Databricks, there are two types of tables: managed tables and external tables.
Understanding the distinction between them is essential for effectively managing
your data. Table 2-1 summarizes the key differences between these two types of
tables.

Table 2-1. Comparison of managed and external tables in Delta Lake

Managed table External table
Created within its own database directory
CREATE TABLE table_name

Created outside the database directory (in a path specified by the
LOCATION keyword)
CREATE TABLE table_name

LOCATION <path>
Dropping the table deletes both the metadata and
the underlying data files of the table

Dropping the table only removes the metadata of the table. It does
not delete its underlying data files

Let’s dive deeper to gain a comprehensive understanding of these two types of tables

Managed Tables
A managed table is the default type in Databricks where the table and its associated
data are managed by the metastore, typically Apache Hive or Unity Catalog. When
you create a managed table, the table data is stored within the database directory. This
means that the metastore owns both the metadata and the table data, enabling it to

36 | Chapter 2: Mastering Relational Entities in Databricks

manage the complete lifecycle of the table. This integrated management simplifies
data lifecycle management tasks, such as table deletion and maintenance.

So, when you drop a managed table, not only its metadata is removed from the meta‐
store, but the underlying data files associated with the table are also deleted from
storage. This approach ensures that the data remains consistent with the table defini‐
tion throughout its lifecycle. However, it’s essential to exercise caution when dropping
managed tables, as the associated data will be permanently removed.

External Tables
In contrast to managed tables, an external table in Databricks is a table where only its
metadata is managed by the metastore, while the data files themselves reside outside
the database directory. When creating an external table, you specify the location of
the data files using the LOCATION keyword

CREATE TABLE table_name
LOCATION <path>

Since the metastore does not own the underlying data files, dropping an external
table only removes the metadata associated with the table, leaving its data files intact.
This distinction is crucial, as it enables you to manage the actual data files of the table
separately from its metadata. This is particularly useful when working with data that
is stored in external locations outside DBFS, like in S3 buckets or Azure storage con‐
tainers.

To better understand external tables, let’s revisit our diagram. Figure 2-4 illustrates
creating an external table in the default database. We simply use the CREATE TABLE
statement with the LOCATION keyword. The definition of this external table will be
in the Hive metastore under the ‘default’ database, while the actual data files will
reside in the specified external location.

Understanding Relational Entities | 37

Figure 2-4. Illustration of creating an external table in the default database

Similarly, we can create an external table in any database. Figure 2-5 illustrates creat‐
ing an external table in our database ‘db_x’. First, we specify the database name via the
USE keyword. Then, we create the table with the LOCATION keyword, indicating
the path where the external table data should be stored. This path could be the same
as the previous one used for ‘default.table_3’ table or a different location, depending
on our requirements. And again, the table definition will be stored in the Hive meta‐
store, while the data files will be located in the given external location.

Figure 2-5. Illustration of creating an external table in the new database db_x

38 | Chapter 2: Mastering Relational Entities in Databricks

Even if the database was created in a custom location outside of the default Hive
directory, we can still create external tables within it. Figure 2-6 illustrates this sce‐
nario by using our custom-location database ‘db_y’. Once again, we specify the data‐
base using the USE keyword and create the external table with the LOCATION
keyword. In this scenario, let’s assume we choose the same path as in the previous
example. As before, the table definition will be stored in the metastore, while the data
files will be located in the specified external location.

Figure 2-6. Illustration of creating an external table table3 in the custom-location data‐
base db_y

In summary, Databricks provides two types of tables: managed tables and external
tables. Depending on the use case and data requirements, choosing the appropriate
table type ensures efficient data organization, storage, and maintenance. Opting for
managed tables ensures integrated management, while choosing external tables pro‐
vides greater flexibility and control on managing your tables.

Putting Relational Entities Into Practice
Let’s now put theory into practice. In this section, we will use a new SQL notebook
titled “3.1 - Databases and Tables” to create managed and external tables in various
database types. In addition, we will explore the differences in behavior when drop‐
ping each type of table.

Putting Relational Entities Into Practice | 39

Working in the default Schema
Before we start, let’s explore the Catalog Explorer, where we can access the Hive meta‐
store for our Databricks workspace. To open the Catalog Explorer, click on the ‘Cata‐
log’ tab in the left sidebar of your Databricks workspace.

Figure 2-7. The interface of the Catalog Explorer showing the “default” database in
hive_metastore

By default, under the ‘hive_metastore’ catalog, there’s a database named “default”, as
illustrated in Figure 2-7. We’ll begin by creating some tables within this default data‐
base.

Creating Managed Tables
Firstly, we create a managed table named “managed_default” and populate it with
data:

 USE CATALOG hive_metastore;

 CREATE TABLE managed_default
 (country STRING, code STRING, dial_code STRING);

INSERT INTO managed_default
VALUES ('France', 'Fr', '+33')

Since we’re not specifying the LOCATION keyword, this table is considered managed
in this database. Checking back in the Catalog Explorer, we can confirm that the
‘managed_default’ table has been created under the default database. Alternatively,
without leaving the working notebook, you can directly access the catalog by clicking
on the catalog icon located in the sidebar of the notebook editor (Figure 2-8.

40 | Chapter 2: Mastering Relational Entities in Databricks

Figure 2-8. The catalog in the notebook editor showing the ‘managed_default’ table

Executing the “DESCRIBE EXTENDED” command on our table provides advanced
metadata information, as illustrated in Figure 2-9.

DESCRIBE EXTENDED managed_default

Figure 2-9. The output of the DESCRIBE EXTENDED command on the ‘man‐
aged_default’ table

Among this metadata information, we focus on three key elements:

The type of table, which is indeed Managed

Putting Relational Entities Into Practice | 41

The location, which shows that our table resides in the default Hive metastore under
dbfs:/user/hive/warehouse

The provider, which confirms that this is a Delta Lake table

Creating External Tables
Next, we create an external table within the default database. To achieve this, we sim‐
ply add the LOCATION keyword followed by the desired storage path. In our case,
we’ll store this table under the ‘/mnt/demo’ directory on the DBFS file system.

CREATE TABLE external_default
 (country STRING, code STRING, dial_code STRING)
LOCATION 'dbfs:/mnt/demo/external_default';
INSERT INTO external_default
VALUES ('France', 'Fr', '+33')

After creating and inserting data into this external table, you can use the Catalog
Explorer to verify the presence of the table in the Hive metastore. In addition, run‐
ning “DESCRIBE EXTENDED” on the external table confirms its external nature and
its storage location under “/mnt/demo”, as illustrated in Figure 2-10.

DESCRIBE EXTENDED external_default

Figure 2-10. The output of the DESCRIBE EXTENDED command on the ‘exter‐
nal_default’ table

Dropping Tables:
If you want to remove tables from the database, you can simply drop them using the
DROP TABLE command. However, the behavior differs for managed and external
tables. Let’s discuss the consequences of this action on each table type. We start by
running the DROP TABLE command on our managed table

DROP TABLE managed_default

When you drop a table in Hive, it effectively deletes its metadata from the metastore.
This means that the table’s definition, including its schema, column names, data
types, and other relevant information, is no longer stored in the metastore.

42 | Chapter 2: Mastering Relational Entities in Databricks

Dropping the managed table not only removes its metadata from the metastore, but
also deletes all associated data files from the storage. This is confirmed by a ‘file not
found’ exception received upon checking the table directory:

%fs ls 'dbfs:/user/hive/warehouse/managed_default'
FileNotFoundException: No such file or directory dbfs:/user/hive/warehouse/
managed_default

However, when the external table is dropped, we see different behavior:

DROP TABLE external_default

Dropping the external table removes its entry from the Hive metastore, but since the
underlying data is stored outside the database directory, the data files remain intact.
We can easily confirm that both the table directory and its data files still persist by
checking the table directory:

%fs ls 'dbfs:/mnt/demo/external_default'

Figure 2-11. The output of the %fs command on the ‘external_default’ table directory

Figure 2-11 confirms that the data files of the external table continue to exist in the
table directory even after the table has been dropped. You can manually remove the
table directory and its content by the running the the dbutils.fs.rm() function in
Python:

%python
dbutils.fs.rm('dbfs:/mnt/demo/external_default', True)

Working In a New Schema
In addition to the default database, we can also create additional databases, and man‐
age tables within those databases. Let’s walk through the process step by step.

Creating a New Database:
You can create a new database using either the CREATE SCHEMA or CREATE
DATABASE syntax, which are essentially interchangeable.

CREATE SCHEMA new_default

Once the database is created, you can inspect its metadata using the DESCRIBE
DATABASE EXTENDED command. This command provides information about the
database, such as its location in the underlying storage

Putting Relational Entities Into Practice | 43

DESCRIBE DATABASE EXTENDED new_default

Figure 2-12. The output of the DESCRIBE DATABASE EXTENDED command on the
‘new_default’ schema

As illustrated in Figure 2-12, the new database is stored under the default Hive direc‐
tory with a ‘.db’ extension to distinguish it from other table folders in the directory.

Creating Tables in The New Database:
Let’s now create managed tables and external tables within our newly created data‐
base. To create tables within a database, you need first to set it as the current schema
by specifying its name through the USE keyword

USE new_default;

CREATE TABLE managed_new_default
 (country STRING, code STRING, dial_code STRING);
 INSERT INTO managed_new_default
VALUES ('France', 'Fr', '+33');

CREATE TABLE external_new_default
 (country STRING, code STRING, dial_code STRING)
LOCATION 'dbfs:/mnt/demo/external_new_default';
INSERT INTO external_new_default
VALUES ('France', 'Fr', '+33');

In the Catalog Explorer, you can locate the new schema and confirm that the two
tables have been successfully created within this database. Alternatively, you can just
refresh the catalog in the notebook editor to show the new objects, as shown in
Figure 2-13:

44 | Chapter 2: Mastering Relational Entities in Databricks

Figure 2-13. Refreshing the catalog in the notebook editor shows the ‘new_default’
schema and its tables

By running “Describe Extended” on each of these tables, we can see that the first table
is indeed a managed table created in its database folder under the default Hive direc‐
tory (Figure 2-13). While the second table where we use the LOCATION keyword
has been defined as an external table under ‘/mnt/demo’ location (Figure 2-14).

DESCRIBE EXTENDED managed_new_default

Putting Relational Entities Into Practice | 45

Figure 2-14. Metadata of the ‘managed_new_default’ table

DESCRIBE EXTENDED external_new_default

Figure 2-15. Metadata of the ‘external_new_default’ table

Dropping Tables:
Let’s proceed to drop the newly created tables:

DROP TABLE managed_new_default;
DROP TABLE external_new_default;

Dropping the tables removes their entries from the Hive metastore. You can easily
confirm this in the Catalog Explorer. Moreover, this action on the managed table
results in the removal of its directory and associated data files from the storage.

%fs ls 'dbfs:/user/hive/warehouse/new_default.db/managed_new_default'
FileNotFoundException: No such file or directory dbfs:/user/hive/warehouse/
new_default.db/managed_new_default

However, as expected, in the case of the external table, although the table itself is
dropped from the database, the directory and its data files persist in the specified
external location (Figure 2-16).

%fs ls 'dbfs:/mnt/demo/external_new_default'

46 | Chapter 2: Mastering Relational Entities in Databricks

Figure 2-16. The output of the %fs command on the ‘external_new_default’ table direc‐
tory

Working In a Custom-Location Schema

Creating the Database:
In our last scenario, we will create a database in a custom location outside of the
default Hive directory. To achieve this, we simply use the the CREATE SCHEMA
stemement, and we add the LOCATION keyword followed by the desired storage
path, in our case ‘dbfs:/Shared/schemas’

CREATE SCHEMA custom
LOCATION 'dbfs:/Shared/schemas/custom.db'

You can inspect the Catalog Explorer to confirm that the database has been created
within the Hive metastore. Upon closer examination using the “Describe Database
Extended” command, we confirm that the database was situated in the custom loca‐
tion we specified during its creation (Figure 2-17).

DESCRIBE DATABASE EXTENDED custom

Figure 2-17. The output of the DESCRIBE DATABASE EXTENDED command on the
‘custom’ schema

Tables Creation:
We proceed to use this database to create tables and populate them with data. Again,
we create both managed and external tables.

You can inspect the Catalog Explorer to confirm that the two tables have been suc‐
cessfully created within our new database. In addition, by running “Describe Exten‐
ded” on each of these tables, we can confirm that the ‘managed_custom’ table is

Putting Relational Entities Into Practice | 47

indeed a managed table since it is created in its database folder located in the custom
location (Figure 2-18). While the ‘external_custom’ table is an external table since it is
created outside the database directory (Figure 2-19).

USE custom;
CREATE TABLE managed_custom
 (country STRING, code STRING, dial_code STRING);
 INSERT INTO managed_custom
VALUES ('France', 'Fr', '+33');

CREATE TABLE external_custom
 (country STRING, code STRING, dial_code STRING)
LOCATION 'dbfs:/mnt/demo/external_custom';
 INSERT INTO external_custom
VALUES ('France', 'Fr', '+33');

DESCRIBE EXTENDED managed_custom

Figure 2-18. Metadata of the ‘managed_custom’ table

DESCRIBE EXTENDED external_custom

Figure 2-19. Metadata of the ‘external_custom’ table

Dropping Tables
Let’s proceed to drop the newly created tables:

48 | Chapter 2: Mastering Relational Entities in Databricks

DROP TABLE managed_custom;
DROP TABLE external_custom;

Once more, dropping the tables removes their entries from the Hive metastore. You
can easily confirm this in the Catalog Explorer. Furthermore, this action on the man‐
aged table removes its directory and associated data files from the database directory
located in the custom location.

%fs ls 'dbfs:/Shared/schemas/custom.db/managed_custom'
FileNotFoundException: No such file or directory dbfs:/Shared/schemas/custom.db/
managed_custom

However, as expected, in the case of an external table, the table’s directory and data
files remain intact in their external location (Figure 2-20).

%fs ls 'dbfs:/mnt/demo/external_custom'

Figure 2-20. The output of the %fs command on the ‘external_custom’ table directory

Remember, you can manually remove the table directory and its content by running
the dbutils.fs.rm() function in Python.

In conclusion, we’ve explored the dynamics of managed and external tables, illustrat‐
ing how they interact within the context of a different type of databases. With this
understanding, we’re equipped to dive into more advanced topics on Delta Lake
Tables in the following sections.

Setting Up Delta Tables
CTAS statements
One of the key features of Delta Lake tables is their flexibility in creation. While tradi‐
tional methods like the regular CREATE TABLE statements are available, Databricks
also supports CTAS statements or Create Table As Select statements. CTAS state‐
ments allow the creation and population of tables at the same time based on the
results of a SELECT query. This means that with CTAS statements, you can create a
new table from existing data sources.

CREATE TABLE table_2
AS SELECT * FROM table_1

This simple yet powerful syntax shows how CTAS statements work. In this example,
we’re creating ‘table_2’ by selecting all data from ‘table_1’. CTAS statements automati‐

Setting Up Delta Tables | 49

cally infer schema information from the query results, eliminating the need for man‐
ual schema declaration.

CTAS statements in Databricks offer a convenient means to perform simple transfor‐
mations on data during the creation of Delta tables. These transformations can
include tasks such as renaming columns or selecting specific columns for inclusion in
the target table. Let’s illustrate this with an abstract example:

CREATE TABLE table_2
AS SELECT col_1, col_3 AS new_col_3 FROM table_1

In this example, the CTAS statement generates a new table named ‘table_2', by select‐
ing columns ‘col_1’ and ‘col_3’ from ‘table_1’. Additionally, the ‘col_3’ is renamed to
‘new_col_3’ in the resulting table.

Moreover, a range of options can be added to the CREATE TABLE clause to custom‐
ize table creation, allowing for precise control over table properties and storage con‐
figurations.

CREATE TABLE new_users
 COMMENT "Contains PII"
 PARTITIONED BY (city, birth_date)
 LOCATION '/some/path'
 AS SELECT id, name, email, birth_date, city FROM users

In the provided example, we illustrate several of these options:

• Comment: the COMMENT clause enables you to provide a descriptive comment
for the table, helping in the discovery and understanding of its contents. Here,
we’ve added a comment indicating that the table contains Personally Identifiable
Information (PII), such as the user’s name and email.

• Partitioning: The underlying data of the table can be partitioned into subfolders.
The PARTITIONED BY clause allows for data partitioning based on one or more
columns. In this case, we’re partitioning the table by ‘city’ and ‘birth_date’.
Partitioning can significantly enhance the performance of large Delta tables by
facilitating efficient data retrieval. However, it’s important to note that for small
to medium-sized tables, the benefits of partition may be negligible or outweighed
by drawbacks. One significant drawback is the potential emergence of what is
known as the “small files problem”. This problem arises when data partitioning
results in the creation of numerous small files, each containing a relatively small
amount of data.
While partitioning aims to improve query performance by reducing the amount
of data scanned, the presence of many small files can prevent file compaction and
efficiency in data skipping. In general, partitioning should be selectively applied
based on the size and nature of the data.

50 | Chapter 2: Mastering Relational Entities in Databricks

• External Location: The location option enables the creation of external tables.
Remember, the LOCATION keyword allows you to specify the storage location
for the created table. This means that the data associated with the table will be
stored in an external location specified by the provided path.

Comparing CREATE TABLE vs. CTAS
Table 2-2 summarizes the differences between regular CREATE TABLE statements
and CTAS (Create Table As Select) statements.

Table 2-2. Comparison of CREATE TABLE and CTAS statements
CREATE TABLE statement CTAS statement
CREATE TABLE table_2
(col1 INT, col2 STRING, col3
DOUBLE)

CREATE TABLE table_2
AS SELECT col1, col2, col3 FROM
table_1

Schema
Declaration

Supports manual schema declaration Does not support manual schema declaration. It
automatically infer schema

Populating
Data

Creates an empty table; an INSERT INTO
statement is required

The table is created with data

Let’s dive deeper to gain a comprehensive understanding of these differences.

Schema Declaration
Regular CREATE TABLE statements require manual schema declaration. For
instance, you would explicitly specify the data types for each column, such as Integer
for column 1, String for column 2, and Double for column 3. By contrast, CTAS
statements automate schema declaration by inferring schema information directly
from the results of the query.

Populating Data
When using regular CREATE TABLE statements, an empty table is created, necessi‐
tating an additional step of loading data into the table using INSERT INTO state‐
ments. By contrast, CTAS statements simplify this process by simultaneously creating
the table and populating it with data from the output of the SELECT statement. In the
upcoming module, we’ll see CTAS statements in action, observing how they offer a
more efficient and straightforward approach to table creation and data population
compared to traditional CREATE TABLE statements.

Setting Up Delta Tables | 51

Table Constraints
After creating a Delta Lake table, whether through a regular CREATE TABLE state‐
ment or a CTAS statement, you have the option to enhance its integrity by adding
constraints. Databricks currently supports two types of table constraints:

NOT NULL constraints, and

CHECK constraints.

ALTER TABLE table_name ADD CONSTRAINT <constraint_name> <constraint_detail>

When applying constraints to a Delta table, it’s crucial to ensure that existing data in
the table adheres to these constraints before defining them. Once a constraint is
enforced, any new data that violates the constraint will result in a write failure.

For instance, let’s consider the addition of a CHECK constraint to the ‘date’ column of
a Delta table. CHECK constraints resemble standard WHERE clauses used to filter
datasets. They define conditions that incoming data must satisfy in order to be
accepted into the table. For instance, suppose we want to ensure that dates in the
‘date’ column fall within a specific range. We can add a CHECK constraint to enforce
this condition:

ALTER TABLE my_table ADD CONSTRAINT valid_date CHECK (date >= '2024-01-01' AND date
<= '2024-12-31');

In this example, ‘valid_date’ is the name of our constraint, and the condition ensures
that the ‘date’ column values fall within the specified range for the year 2024. Any
attempt to insert or update data with dates outside this range will be rejected. This
helps maintain data consistency and integrity within the Delta Lake table.

Cloning Delta Lake Tables
In Databricks, if you need to back up or duplicate your Delta Lake table, you have
two efficient options: deep clone and shallow clone.

Deep Clone
Deep clone involves copying both data and metadata from a source table to a target.
Here’s an example of how you might use the command:

CREATE TABLE table_clone
DEEP CLONE source_table

Simply, use the CREATE TABLE statement, specify the name of the new target table,
and include the “DEEP CLONE” keyword followed by the name of the source table.

52 | Chapter 2: Mastering Relational Entities in Databricks

This copy process can occur incrementally, allowing you to synchronize changes
from the source to the target location. Simply, execute CREATE OR REPLACE
TABLE instead in order to create a new table version with the new changes.

CREATE OR REPLACE TABLE table_clone
DEEP CLONE source_table

It’s important to note that because in deep cloning all the data must be copied over,
this process may take quite a while, especially for large datasets.

Shallow Clone
On the other hand, the shallow clone provides a quicker way to create a copy of a
table. It only copies the Delta transaction logs, meaning no data movement takes
place during shallow cloning.

CREATE TABLE table_clone
SHALLOW CLONE source_table

Shallow cloning is an ideal option for scenarios where, for example, you need to test
applying changes on a table without altering the current table’s data. This makes it
particularly useful in development environments where rapid iteration and experi‐
mentation are common.

Data Integrity in Cloning
Whether you choose deep clone or shallow clone, any modifications made to the
cloned version of the table will be tracked and stored separately from the source. This
ensures that changes made during testing or experimentation do not affect the integ‐
rity of the original source table.

Exploring Views
In Databricks, views serve as virtual tables without physical data. A view is nothing
but a saved SQL query against actual tables, where this logical query is executed each
time the view is queried.

Figure 2-21 illustrates an abstract example of creating a view on top of two tables by
performing an inner join between them. Each time the view is queried, the join oper‐
ation will be executed again against these tables.

Exploring Views | 53

Figure 2-21. Illustration of a view object on top of two tables

To demonstrate how views function within Databricks, we will use a new SQL note‐
book titled “3.2A - Views”. We start by creating a table of data to be used in this dem‐
onstration, called “cars”. This table contains columns for ID, model, brand, and
release year of the cars.

After creating the table and inserting some data into it, you can verify its creation in
the Catalog Explorer. Additionally, we can use the SHOW TABLES command to list
all tables and views in the default database.

 USE CATALOG hive_metastore;
 CREATE TABLE IF NOT EXISTS cars
(id INT, model STRING, brand STRING, year INT);
INSERT INTO cars
VALUES (1, 'Cybertruck', 'Tesla', 2024),
 (2, 'Model S', 'Tesla', 2023),
 (3, 'Model Y', 'Tesla', 2022),
 (4, 'Model X 75D', 'Tesla', 2017),
 (5, 'G-Class G63', 'Mercedes-Benz', 2024),
 (6, 'E-Class E200', 'Mercedes-Benz', 2023),
 (7, 'C-Class C300', 'Mercedes-Benz', 2016),
 (8, 'Everest', 'Ford', 2023),
 (9, 'Puma', 'Ford', 2021),
 (10, 'Focus', 'Ford', 2019)
SHOW TABLES

54 | Chapter 2: Mastering Relational Entities in Databricks

Figure 2-22. The output of the SHOW TABLES command

Figure 2-22 displays the output of the SHOW TABLES command. As observed, we
have a table named “cars” in the default database.

View Types
There are three types of views available in Databricks: Stored View, Temporary views,
and Global Temporary views. Let’s explore these different types of views and how
they function within the platform.

Stored Views
Stored views, often referred to simply as ‘views', are similar to traditional database
views. They are database objects where their metadata is persisted in the database. To
create a stored view, we use the CREATE VIEW statement followed by the AS key‐
word and the logical SQL query defining the view.

CREATE VIEW view_name
AS <query>

Let’s create a stored view that displays only Tesla cars from our ‘cars’ table. We use the
CREATE VIEW statement, naming our view ‘view_tesla_cars’, and specify the logical
query using the AS keyword. This query selects all records from the ‘cars’ table where
the brand is equal to ‘Tesla’.

CREATE VIEW view_tesla_cars
AS SELECT *
 FROM cars
 WHERE brand = 'Tesla';

Running the SHOW TABLES command again confirms that the view has been persis‐
ted in the default database and it is not a temporary object, as indicated in the
“isTemporary” column in Figure 2-23.

Exploring Views | 55

Figure 2-23. The output of the SHOW TABLES command after creating the
‘view_tesla_cars’ view

Once created, you can query the stored view using a standard SELECT statement,
treating it as if it were a table object.

SELECT * FROM view_tesla_cars;

Figure 2-24. The result of querying the ‘view_tesla_cars’ stored view

Figure 2-24 displays the result of querying the stored view. It’s worth noting that this
result is retrieved directly from the “cars” table. Remember, each time the view is
queried, its underlying logical query is executed against the source table, in this case,
the ‘cars’ table.

Temporary Views
The second type of views in Databricks is Temporary views. Temporary views are
bound to the Spark session and are automatically dropped when the session ends.
They are handy for temporary data manipulations or analyses. To create a temporary
view, you simply add the TEMPORARY, or TEMP keyword to the CREATE VIEW
command.

CREATE TEMP VIEW view_name
AS <query>

Let’s create a temporary view called “temp_view_cars_brands”. This temporary view
simply retrieves the unique list of brands from our “cars” table (Figure 2-25).

56 | Chapter 2: Mastering Relational Entities in Databricks

CREATE TEMP VIEW temp_view_cars_brands
AS SELECT DISTINCT brand
 FROM cars;
SELECT * FROM temp_view_cars_brands;

Figure 2-25. The result of querying the ‘temp_view_cars_brands’ temporary view

Running the SHOW TABLES command confirms the addition of the temporary view
to the list, as illustrated in Figure 2-26. The ‘isTemporary’ column indicates its tempo‐
rary nature. In addition, since it’s a temporary object, it is not persisted to any data‐
base, as indicated in the ‘database’ column.

Figure 2-26. The output of the SHOW TABLES command after creating the
‘temp_view_cars_brands’ temporary view

The lifespan of a temporary view is limited to the duration of the current Spark ses‐
sion. It’s essential to note that a new Spark session is initiated in various scenarios
within Databricks, such as:

• Opening a new notebook,
• Detaching and reattaching a notebook to a cluster
• Restarting the Python interpreter due to a Python package installation, or

Exploring Views | 57

• Restarting the cluster itself.

To confirm this, let’s create a new notebook called “3.2B - Views (Session 2)”, and
observe the behavior of our created views within it. In this new Spark session, let’s
first run the SHOW TABLES command.

 USE CATALOG hive_metastore;
 SHOW TABLES;

Figure 2-27. The output of the SHOW TABLES command in a new Spark session

Figure 2-27 displays the output of the SHOW TABLES command in the newly cre‐
ated Spark session. This result confirms the existence of the “cars” table, as expected.
In addition, the stored view of Tesla cars also exists in this new notebook. However,
the temporary view of the car brands does not exist in this new session.

Global Temporary Views
Global temporary views behave similarly to other temporary views but are tied to the
cluster instead of a specific session. This means that as long as the cluster is running,
any notebook attached to it can access its global temporary views. To define a global
temporary view, you add the GLOBAL TEMP keyword to the CREATE VIEW com‐
mand.

CREATE GLOBAL TEMP VIEW view_name
AS <query>

In our original “3.2A - Views” notebook, let’s create a global temporary view, called
“global_temp_view_recent_cars”. This view retrieves all cars from our ‘cars’ table
released in 2022 or later, ordered in descending order.

CREATE GLOBAL TEMP VIEW global_temp_view_recent_cars
AS SELECT * FROM cars
 WHERE year >= 2022
 ORDER BY year DESC;

Global temporary views are stored in a cluster’s temporary database, named
‘global_temp’. When querying a global temporary view in a SELECT statement, you
need to specify the ‘global_temp’ database qualifier.

58 | Chapter 2: Mastering Relational Entities in Databricks

SELECT * FROM global_temp.global_temp_view_recent_cars;

Figure 2-28. The result of querying the the global temporary view

Figure 2-28 displays the result of querying the global temporary view, showing the
latest entries from our ‘cars’ tables.

If you run the SHOW TABLES command, you will notice that our global temporary
view is not listed among other objects. This occurs because, by default, the command
only displays objects in the ‘default’ database. Since the global temporary views are
tied to the ‘global_temp’ database, we need to use the command SHOW TABLES IN,
explicitly specifying the database name as ‘global_temp’.

SHOW TABLES IN global_temp;

Figure 2-29. The output of the SHOW TABLES command in the global_temp database

In Figure 2-29, we can see the “global_temp_view_recent_cars”, which is indeed a
temporary object tied to the ‘global_temp’ database. Since our
“temp_view_cars_brands” is not tied to any database, it’s typically shown with every
SHOW TABLES command.

Now, let’s switch back to the second notebook “3.2B - Views (Session 2)”. In this new
Spark session, we can explore the objects in the ‘global_temp’ database (Figure 2-30).

Exploring Views | 59

Figure 2-30. The output of the SHOW TABLES command in the global_temp database
within the new spark session

Since we are leveraging the same cluster, our global temporary view also exists in this
new session. As long as the cluster is running, the ‘global_temp’ database persists, and
any notebook attached to the cluster can access its global temporary views. You can
confirm this by querying the global temporary view to see the recent cars in this new
session.

Comparison of View Types
Understanding the distinctions between the view types and their lifecycles is essential
for effective data manipulation and collaboration within your Spark environment.
Table 2-3 summarizes the differences between these three types of views:

Table 2-3. Comparison of view types

(Stored) View Temporary view Global Temporary view
Creation Syntax CREATE VIEW CREATE TEMP VIEW CREATE GLOBAL TEMP VIEW>
Accessibility Accessed across sessions/clusters Session-scoped Cluster-scoped
Lifetime Dropped only by

DROP VIEW statement
Dropped when session ends Dropped when cluster restarted or

terminated

Creation Syntax
There’s a slight difference in the CREATE VIEW statements for temporary and global
temporary views. For temporary views, we include the TEMP keyword, whereas for
global temporary views, we add the GLOBAL TEMP keyword.

Accessibility
Stored views are similar to tables, with their definitions stored in the database, but
not the data itself. Remember, a view essentially represents a SQL query. Since stored
views are saved in the database, they can be accessed across multiple sessions and
clusters.

Temporary views, in contrast, are only accessible within the current session. Global
temporary views bridge the gap between stored and temporary views; they can be
accessed across multiple sessions but are tied to the same cluster.

60 | Chapter 2: Mastering Relational Entities in Databricks

Lifetime
Lastly, when it comes to removing these views, different methods apply. Stored views
are dropped using the DROP VIEW command, while temporary views are automati‐
cally dropped when the session ends. Similarly, global temporary views are also auto‐
matically dropped, but this occurs when the cluster is restarted or terminated.

Dropping Views
Let’s finally drop our stored view by running the DROP VIEW command, like in
standard SQL:

DROP VIEW view_tesla_cars;

If you want to delete temporary views without waiting for the session to end or for
the cluster to terminate, you can manually achieve this by using the DROP VIEW
command as well.

DROP VIEW temp_view_cars_brands;
DROP VIEW global_temp.global_temp_view_recent_cars;

This allows you to manually clean up such resources when they are no longer needed.

In summary, views in Databricks serve as a powerful solution for organizing and
manipulating data without the need to duplicate it physically. With three types of
views, Databricks offers a variety of options to suit different use cases and require‐
ments.

Exploring Views | 61

	Cover
	Copyright
	Table of Contents
	Chapter 1. Managing Data with Delta Lake
	Introducing Delta Lake
	What is Delta Lake?
	Delta Lake Transaction Log
	Understanding Delta Lake Functionality
	Delta Lake Advantages

	Working with Delta Lake Tables
	Creating Tables
	Catalog Explorer
	Inserting Data
	Exploring Table Directory
	Exploring Table History

	Exploring Delta Time Travel
	Querying Older versions
	Rollbacking Back to Previous Versions

	Optimizing Delta Lake Tables
	Z-Order Indexing

	Vacuuming
	Vacuuming in Action

	Dropping Delta Lake Tables

	Chapter 2. Mastering Relational Entities in Databricks
	Understanding Relational Entities
	Databases in Databricks
	Tables in Databricks

	Putting Relational Entities Into Practice
	Working in the default Schema
	Working In a New Schema
	Working In a Custom-Location Schema

	Setting Up Delta Tables
	CTAS statements
	Comparing CREATE TABLE vs. CTAS
	Table Constraints
	Cloning Delta Lake Tables

	Exploring Views
	View Types
	Comparison of View Types

